20. Photosolvolysis of 2-Allylated Anilines to 2-Indanols

by Bernhard Scholl¹), Synèse Jolidon²), and Hans-Jürgen Hansen³)*

Institut de chimie organique de l'Université, Pérolles, CH-1700 Fribourg

(1.XI.85)

It is shown that 2-allylated anilines (cf. Schemes 2-4, 7, and 8) on irradiation in protic solvents such as H₂O. MeOH, and EtOH in the presence of H_2SO_4 undergo a novel photosolvolysis reaction to yield specifically *trans*-2-hydroxy- and *trans*-2-alkoxy-1-methylindanes. Intermediates are presumably tricyclo[4.3.0.0^{1,8}]nona-2,4dienes formed in an intramolecular [2s + 2s] cycloaddition reaction (cf. Scheme 7). On the other hand, N,N,N-trimethyl-2-(1'-methylallyl)anilinium salts 18 (Scheme 6) and 2-(3'-butenyl)-N,N-dimethylaniline (17) lose on irradiation in MeOH or H_2SO_4 /MeOH the ammonium group reductively to yield (1-methylallyl)benzene (19) and 1-methylindane (20), respectively.

We have already reported in detail on the photoreactivity of 2-allylanilines which is dependent on the degree of alkylation at the N-atom [1-4]. Non-alkylated and N-monoalkylated 2-allylanilines (e.g. 1, Scheme 1) yield on irradiation in MeOH via an intramolecular CT-complex in the singlet state spiro[2.5]octadien-imines of type 2 which undergo rearrangement to the corresponding indolines (e.g. 3) and solvolysis to 2-(2'-me-thoxyalkyl)anilines (e.g. 4) [1-3].

On the other hand, N,N-dialkyl-2-allylanilines (e.g. 5) do not show this photochemical behaviour. However, they undergo in their triplet state a clean aromatic di- π methane rearrangement to yield the corresponding 2-cyclopropylanilines (e.g. 6) [1] [4]. Since the electronic nature of anilines can easily be changed by protonation, we were interested whether the described photoreactions of 2-allylated anilines could be quenched by protonation⁴).

¹) Part of the Ph.D. thesis of B.S., No. 845, University of Fribourg, 1983. Present address: Technical Department, F. Hoffmann-La Roche & Co., Ltd., CH-4002 Basle.

²) Present address: Pharmaceutical Research Department, F. Hoffmann-La Roche & Co., Ltd., CH-4002 Basle.

³) Present address: Prof. Dr. H.-J. Hansen, Central Research Units, F.Hoffmann-La Roche & Co., Ltd., CH-4002 Basle.

⁴) For acidities of anilinium ions in the ground and excited state, see [5] and literature cited therein.

Direct irradiation of (E)-2-(2'-butenyl)-N,N-dimethylaniline ((E)-7) in MeOH with a high-pressure Hg lamp leads to rapid (E)/(Z)-isomerization and formation of the expected products (trans/cis-8; see Scheme 2) of the di- π -methane rearrangement [4]. Under the same conditions, however, in $0.1 \text{ M}_2 \text{SO}_4/\text{MeOH}$ again rapid (E)/(Z)-isomerization of (E)-7 and the formation of a new product, namely trans-2-methoxy-1-methyl-indane (trans-9; isolated yield 43%) is observed. The cis-compound, prepared independently (see Exper. Part), could not be found in the reaction mixture (limit of detection < 0.2%). This new photosolvolysis of (E)/(Z)-7 occurred with the same rate in $5 \text{ M}_2 \text{SO}_4/\text{MeOH}$ which indicates that formation of trans-9 is a reaction of the corresponding excited anilinium ion.

This view is supported by the results obtained from the photolysis of the N-monomethylated aniline (E)-10 (Scheme 3). Whereas irradiation in MeOH results in rapid (E)/(Z)-isomerization and formation of the mixture of indoline 11 and the MeOH-addition product 12 [2] a quenching of these products takes place in 0.1N H₂SO₄/MeOH. Again, rapid (E)/(Z)-isomerization and formation of *trans*-9 as the sole product of photosolvolysis is observed.

To get more insight into the formation of the 2-indanol derivatives, we investigated the photochemical behaviour of (\pm) -N,N-dimethyl-2-(1'-methylallyl)aniline ((\pm)-13) which is isomeric with (E)/(Z)-7, however, devoid of stereoisomerism at the C=C bond. The results of irradiations in 0.1-0.2N H₂SO₄ in H₂O, MeOH, and EtOH are shown in Scheme 4.

In all cases only the *trans*-2-indanol derivatives could be detected⁵). Since 13 rearranges photochemically in MeOH to the same di- π -methane products *trans/cis*-8 [8], as obtained from (E)/(Z)-7 (cf. Scheme 2), there exists, in principle, the possibility that these compounds are intermediates in the photosolvolysis reaction of (E)/(Z)-7 and 13 in acidic media. However, the result of an irradiation of *trans*-8 in 0.2N H₂SO₄/MeOH clearly show that 2-(1'-methoxybutyl)-N,N-dimethylaniline (16) is the main product of the photosolvolysis of *trans/cis*-8 besides small amounts of (E)/(Z)-7 and 2-(3'-butenyl)-N,N-dimethylaniline (17; Scheme 5). These compounds are typical products of reactions of the excited singlet state of phenylcyclopropanes (cf. [2] [9-11]). Small amounts of *trans*-9 were also found in the reaction mixture. But there is no doubt that these arise from (E)/(Z)-7 generated in the course of the photoreaction.

^a) For product composition see Table 2, Exper. Part.

That, indeed, trans/cis-8 can be excluded as precursors of trans-9 follows also from the fact that irradiation of (-)-(S)-13 in 0.2N H₂SO₄/MeOH yielded (-)-trans-9⁶) without loss of optical purity. Would have trans/cis-8 been intermediates in the photoreaction, a loss of optical purity in the product should be the result since the di- π -methane rearrangement of (-)-(S)-13 occurs with substantial decreases of optical activity of trans/cis-8 [8].

⁵) Relative configurations were determined by ¹H-NMR spectroscopy with respect to *trans-9 (cf. Exper. Part* and [6] [7]). The compounds of the *trans*-series exhibit for CH₃-C(1) a distinctly higher chemical shift (1.27, 1.28, and 1.34 ppm for 14, 9, and 15, resp.) as compared to *cis-9* (1.15 ppm).

⁶) (-)-trans-9 should have (1R,2R)-configuration, because the configuration at C(1') of the starting material should not be changed in the course of the photoreaction. The sign of rotations of (-)-trans-9 nicely correlates with that of (-)-(S)-1-methylindane of the same absolute configuration at C(1) [12].

pH ^b) in MeOH	Products [%] ^c)						
	13	trans-9	trans/cis-8	16	ΣProd.		
7.60	20.3	_	55.8	_	78.1		
6.70	11.1	_	76.9	-	88.0		
5.60	10.2	_	73.8	_	84.0		
4.45	8.8	-	77.9	2.2	88.9		
3.70	2.8	1.8	72.7	20.5	97.8		
2.90	1.4	25.1	28.2	8.9	63.6		
1.75	5.6	72.9	3.8	8.9	91.2		
1.05	9.1	77.0	-	2.8	88.9		
0.30	9.3	75.5		· -	84.8		

Table 1. $[H^+]$ Dependence of the Photoreaction of N,N-Dimethyl-2-(l'-methylallyl)aniline (13) in MeOH^a)

^a) Analytical irradiations of 4.4×10^{-2} m solutions of 13 in MeOH with a high-pressure Hg lamp through quartz during 30 min (merry-go-round apparatus).

^b) pH in MeOH measured with a glass electrode calibrated with aqueous buffer solution (citric acid/NaOH) at pH 5 and adjusted by addition of H_2SO_4 to the solution of 13 in pure MeOH.

c) GC analyses with dodecane as internal reference.

Table 1 shows the $[H^+]$ dependence of the photoreaction of 13 in MeOH. Under slightly acidic conditions, only the formation of *trans/cis-8* and their photosolvolysis product 16 is observed. The more acidic the medium becomes the more the formation of these products is repressed and the generation of *trans-9* starts. In strongly acidic media, *trans-9* represents to sole photolysis product of 13. Thus, *trans-9* is the photoproduct of protonated 13 and *trans/cis-8* are those of the free aniline.

Scheme 6

^a) Yield of purified material.

The electronic behaviour of quaternary anilinium salts is similar to that of protonated anilines in acidic media. Therefore, we also tested the photochemical reactivity of N, N, Ntrimethyl-2-(1'-methylallyl)anilinium salts (18) in MeOH as well as in 0.1N H₂SO₄ in MeOH and in H₂O saturated with Et₂O (*Scheme 6*). In all cases not a trace of *trans*-9 or *trans*-14 could be detected in the reaction mixture. However, as a new product (1-methylallyl)benzene (19) was formed in up to 94% analytical yield (GC analyses with tridecane as internal reference), *i.e.* the anilinium salts 18 (X = I, BF₄) underwent a photo-*Emde* degradation [4] [13], known to occur also with N, N, N-trimethylanilinium iodide under direct excitation [14] [15] or with the bromide and chloride under sensitization with acetone [15]. Similarly, the direct irradiation of 2-(3'-butenyl)-N, N-dimethylaniline (17) in 0.2N H₂SO₄/MeOH did not give solvolysis products. Instead, 1-methylindane (20) was isolated as main reductive product of 17. This finding clearly indicates that the excitation of protonated 17 leads to homolysis of the C(1)–N bond and formation of the corresponding phenyl radicals which undergo a radical 1,5-cyclization to yield (1-indanyl)methyl radicals which abstract H-atoms from MeOH⁷).

Our findings are also in agreement with the observation of *Beckwith* and *Gara* [16] that treatment of 1-(3'-butenyl)-2-iodobenzene with Bu₃SnH yields 1-methylindane (20) but no 1,2,3,4-tetrahydronaphthalene. That the photolysis of the anilinium salts 18 which should also react *via* homolysis of the C(1)-N bond does not lead to cyclization and formation of 1,2-dimethylbenzocyclobutene reflects the instability of (cyclobutyl)methyl radicals with respect to their ring opened forms (*cf.* [17]) and the fact that *endo*-cyclization of these radicals to the corresponding cyclopentyl radicals does not occur (*cf.* [18]).

These observations and the fact that only *trans*-9 is formed in the photosolvolysis of (E)/(Z)-7, (E)/(Z)-10, and 13 in acidic MeOH can be explained if one supposes the occurrence of congested intermediates of defined configuration which react with the nucleophilic solvent. These intermediates may arise from an intramolecular [2s + 2s] cycloaddition⁸) of the allylic side chain with the benzene ring (*cf. Scheme* 7)⁹). Concerted attack of a solvent molecule at C(8) of the tricyclo[4.3.0.0^{1.8}]nonadiene skeleton under ring opening and loss of the ammonium group at C(6) restores the aromatic system. From the *trans*-configuration of the products follows that the CH₃ groups must occupy the '*exo*'-position at C(7) and C(9) in the intermediates **21** and **22**, respectively. A CH₃ group in the '*endo*'-position at C(7) or C(9) would lead to sterically highly congested molecules because of non-bonding interaction with the solvated ammonium group at C(6). This view stipulates that (*E*)-7 and (*E*)-10 undergo the [2s + 2s] cycloaddition much faster than their (*Z*)-isomers which are in photochemical equilibrium with the (*E*)-forms under

⁷) In agreement with this view is the finding that irradiation of 17 in $[^{2}H_{2}]SO_{4}$ in $[O^{-2}H]$ methanol does not lead to ²H incorporation into **20**.

⁸) So far, we have not done any experiments which could characterize the involved electronic state of the anilinium ions. The cycloaddition may occur as a concerted one-step reaction in the excited singlet state or perhaps as a two-step reaction in the excited triplet state. The photo-*Emde* reaction [13] of 17 and 18 should be the result of the reactivity of the corresponding triplet states (cf. [13] [15]). This means that if the cycloaddition reaction of (E)/(Z)-7, (E)/(Z)-10, and 13 also starts from the corresponding excited triplet state it must occur more rapidly than the homolysis of the C(1)-N bond. Another possibility would be that the stepwise formation of the intermediates of type 21 and 22 is initiated by an intramolecular electron transfer from the allylic double bond as donor to the excited anilinium moiety as acceptor.

⁹) Whereas intramolecular 1,3-cycloadditions of alkenyl side chains to the excited benzene ring have been studied in the last years in great detail (*cf.* [19] and literature cited therein), scarcely nothing is known about intramolecular [2+2] cycloadditions with the exception of their occurrence in rigid polycyclic benzo systems (*cf.* [20]).

the reaction conditions. However, that CH₃ groups in the 'endo'-position at C(7) or C(9) in the tricyclo[$4.3.0.0^{1.8}$]nonadiene intermediates do not hinder the formation of these compounds is clearly shown by the photosolvolysis of *N*,*N*-dimethyl-2-(3'-methyl-2'-butenyl)aniline (**23**) and of 2-(1',1'-dimethylallyl)anisole (**25**) which both yield 2-methoxy-1,1-dimethylindane (**24**) on irradiation in acidic MeOH (cf. [4] and Exper. Part)¹⁰).

Figure. Stereoscopic projection of N,N-dimethyl-(7-exo-methyltricyclo[4.3.0.0^{1.8}]nona-2,4-dien-6-yl)ammonium ion ('exo'-21). View along the C(6)–C(1) bond. H-atoms except that of the ammonium group are omitted. Open circles: C; filled circle: N; dot: H. The postulated structure was generated with the RIMG program (cf. [24]) using X-ray data of bicyclo[2.1.0]pentane and bicyclo[4.2.0]octa-2,4-diene substructures searched for with the ROCSD program in the Cambridge Structural Data Base.

The Figure shows a stereographic view of the skeleton of the postulated tricyclo[4.3.0.0^{1,8}]nonadiene intermediate from (E)-7. The interesting C(1)–C(8) and C(6)–N bonds which should be cleaved concertedly when the nucleophile attacks C(8) are in an *anticlinal*-to-*antiperiplanar* (if one takes into account the banana-like character of the C(1)–C(8) bond) orientation to each other. Moreover, both bonds are in a nearly parallel orientation with respect to the adjacent diene system. The electronic set-up in the intermediate should, therefore, be optimal for an *anti*-elimination reaction (*cf.* [22]) with anchimeric assistance of the adjacent diene and uptake of the nucleophile at C(8). *Morrison* and coworkers [7] [23] found that irradiation of 1-methylindene (**26**) in 0.25M H₂SO₄/MeOH leads to the formation of a 4:1 mixture of *trans*- and *cis*-9 (*Scheme 9*). They postulated the tricyclic compound **27** as intermediate, formed by a disrotatory ring closure of **26**. Protonation of **27** at C(7) would generate the corresponding cyclohexadienyl cation which reacts with MeOH at C(8). The formation of *trans*/*cis*-**9** in this case may

¹⁰) In the case of 25, also the di-π-methane product and its consecutive photoproducts are formed. Compound 24 is also formed on irradiation of 25 in pure MeOH [4] [21].

be the result of the presence of 'exo'- and 'endo'-27 or the unimolecular generation of 1-methylindan-2-yl cations by ionic rupture of the C(1)-C(8) bond with loss of stereochemistry.

To our knowledge, there are only two further reports in the literature concerning intramolecular photoreaction which are similar to those we described here. Already 20 years ago, *Sheehan* and *Wilson* [25] found that desylammonium salts such as 28 (*Scheme 10*) rearrange, on irradiation in H₂O, to 2-phenylbenzofuran (30). The tricyclic compound 29 has been postulated as intermediate.

Recently, *Pattenden* and coworkers [26] reported that certain 2-allylated cyclopent-2enones (e.g. **31**), instead of showing triplet di- π -methane reactivity, undergo in MeOH intramolecular [2 + 2] cycloaddition to yield tricyclic intermediates (e.g. **32**) which are attacked by MeOH at C(7) under opening of the three-membered ring and formation of the bicyclo[3.3.0]octane skeleton (e.g. **33**)¹¹). This intramolecular photoreaction is suitable for the synthesis of cyclopentanoid natural products (e.g. hirsutane [26b]).

We thank Dr. W. Bernhard for mass spectra, Dr. M. Cosandey for ¹³C-NMR spectra, F. Nydegger for elemental analysis, and Dr. H.-J. Ammann, Central Research Units, F. Hoffmann-La Roche & Co., Ltd, CH-4002 Basle, for molecular modeling. Support of this work by the Swiss National Science Foundation is gratefully acknowledged.

Experimental Part

General. See [2] [3] [27].

1. Starting Anilines. 1.1. (E)/(Z)-2-(2'Butenyl)-N-methylaniline ((E)/(Z)-10). Mixture of 87.4% of (E)- and 11.6% of (Z)-form [2].

1.2. (E)/(Z)-2-(Z'-Butenyl)-N,N-dimethylaniline ((E)/(Z)-7). (E)/(Z)-2-(Z'-Butenyl)aniline [27] (11.6 g, 0.079 mol), MeI (28.4 g, 0.2 mol), and K₂CO₃ (13.8 g, 0.079 mol) were stirred in acetone at r.t. for 72 h. Workup yielded 12.2 g (88%) of crude 7 which was distilled over a short column (b.p. 94°/9 Torr) to give 11.9 g of (E)/(Z)-7 with 89.1% of the (E)- and 10.9% of the (Z)-form. UV (MeOH): 278 (sh, 3.06), 246 (3.67); min. 232 (3.61). UV (5N H₂SO₄/MeOH): 267 (2.58), 260 (2.68), 257 (sh, 2.62); min 265 (2.52), 234 (2.05). IR: 2840, 2740 ((CH₃)₂)N); 975 (CH=CH *trans*). ¹H-NMR (CCl₄): 7.2-6.3 (*m*, 4 arom. H); 5.8–5.0 (*m*, H–C(2'), H–C(3')); 3.11 (small *m*, 2 H–C(1')); 2.62 (*s*, (CH₃)₂N); 1.8–1.55 (*m*, 3 H–C(4')).

¹¹) The C=O bond in **32** is nearly optimally disposed for an anchimeric assistance of the C(1)-C(7) bond rupture, *i.e.* the enol system acts in this case as 'leaving group'. This reaction should be catalyzable by acids.

1.3. N,N-Dimethyl-2-(3'-methyl-2'-butenyl)aniline (23). 2-(3'-Methyl-2'-butenyl)aniline [27] (1.0 g, 6.20 mmol), MeI (2.4 g, 16.9 mmol), and K_2CO_3 (2.34 g, 16.9 mmol) were stirred in acetone at r.t. for 36 h. Workup and distillation (120–125°/10 Torr) yielded 0.97 g (83%) of 23 in a purity (GC) of 97%. CC (benzene) gave 23 in a purity of 99% (GC). UV (cyclohexane): 211 (4.24), 249 (3.76); min. 233 (3.64). IR: 2820, 2775 ((CH₃)₂N); 768 (4 adjac. arom. H). ¹H-NMR (CCl₄): 7.1–6.7 (*m*, 4 arom. H); 5.24 (*t*, H–C(2')); 3.30 (*d*, 2 H–C(1')); 2.63 (*s*, (CH₃)₂N); 1.72 (br. *s*, 3 H–C(4'), CH₃–C(3')). MS: 189 (100, M^+ + 1), 174 (19), 144 (17), 134 (29), 132 (86), 118 (26), 91 (13). Anal. calc. for C₁₃H₁₉N (189.30): C 82.48, H 10.12, N 7.40; found: C 82.37, H 10.23, N 7.47.

1.4. Anilines 13 and Salts 18. 1.4.1. (\pm) -N,N-Dimethyl-2-(1'-methylallyl)aniline $((\pm)$ -13). (\pm) -2-(1'-Methylallyl)aniline [2] [3] was dimethylated as described above in 76% yield (b.p. 110–120°/12 Torr). UV (MeOH): 247.5 (3.74), 282 (sh, 3.14); min. 235 (3.69). IR: 2825, 2785 (CH₃)₂N); 948, 911 (CH=CH₂). ¹H-NMR (CCl₄): 7.2–6.8 (m, 4 arom. H); 5.96 (*ddd*, H–C(2')); 5.1–4.8 (m, 2 H–C(3')); 4.3–3.9 (*quint*. like m, H–C(1')); 2.65 (s, (CH₃)₂N); 1.27 (d, CH₃–C(1')). MS: 176 (5, M^{+} + 1). 175 (29, M^{+}), 161 (14), 160 (100), 158 (8), 146 (33), 145 (33), 144 (22), 134 (16). Anal. calc. for C₁₂H₁₇N (175.28): C 82.23, H 9.78, N 7.99; found: C 82.30, H 9.88, N 7.99.

1.4.2. (-)-(S)-N,N-Dimethyl-2-(1'-methylallyl)aniline ((-)-13) [8]. (-)-(S)-2-(1'-Methylallyl)aniline [3] (p = 0.79 ± 0.06) was dimethylated and distilled. $[\alpha]_D^{25} = -58.3 \pm 1.5^\circ$ (c = 2.19, cyclohexane), $[\alpha]_D^{25} = -67.1 \pm 1.4^\circ$ (c = 7.13, CCl₄). All other spectral data were identical with those of (±)-13.

1.4.3. (\pm) -N,N,N-*Trimethyl-2-(1'-methylallyl) anilinium Salts* (18). 1.4.3.1. *Iodide (X = I)*. Aniline (\pm) -13 (1.5 g, 8.56 mmol) and Mel (5.0 g, 35.2 mmol) were boiled for 24 h. The salt formed was collected by filtration and residual 13 (1.2 g) again boiled with MeI (22 g, 0.155 mol) for 48 h. The salt was collected, combined with the first crop and washed several times with Et₂O to yield 0.74 g (27%) of 18 (X=I); m.p. 173–174°. IR: 1636, 1486 (Ar), 1466, 1448, 1438, 1418, 1412, 1403, 1385, 1058, 1016, 1004, 930, 840, 795. ¹H-NMR (CDCl₃/(D₆)DMSO): 8.0–7.2 (*m*, 4 arom. H); 6.05 (*m*, H–C(2')); 5.3–4.8 (*m*, 2 H–C(3')); 4.20 (*dq*, H–C(1')); 4.03 (*s*, (CH₃)₃N⁺); 1.53 (*d*, *J* = 6.8, CH₃–C(1')). Anal. calc. for C₁₃H₂₀IN (317.22): C 49.22, H 6.36, N 4.42; found: C 49.30, H 6.39, N 4.51.

1.4.3.2. *Tetrafluoroborate* ($X = BF_4$). The iodide (0.20 g, 0.63 mmol) and AgBF₄ (0.124 g, 0.63 mmol) were stirred in MeOH and the formed AgI separated by filtration. The tetrafluoroborate **18** ($X = BF_4$) was recrystallized from i-PrOH; m.p. 148–150°. ¹H-NMR ((D₆)acetone): 8.1–7.3 (*m*, 4 arom. H), 6.15 (*m*, H–C(2')); 5.3–4.9 (*m*, 2 H–C(3')); 4.6–4.3 (*m*, H–C(1')); 3.88 (*s*, (CH₃)₃N⁺); 1.48 (*d*, J = 7.8, CH₃–C(1')). Anal. calc. for C₁₃H₂₀BF₄N (277.12): C 56.25, H 7.28, N 5.06; found: C 56.08, H 7.20, N 4.98.

1.5. 2-(3'-Butenyl)-N,N-dimethylaniline (17). 1.5.1. 1-(3'-Butenyl)-2-nitrobenzene (cf. [28]). To a mixture of 2-nitrotoluene (35 g, 0.255 mol), allyl bromide (31 g, 0.255 mol) and Bu₄NHSO₄ (8.7 g, 0.026 mol) was slowly added 50% NaOH soln. (60 ml). The mixture was stirred for 30 h at 60–70°. The org. material was extracted with Et₂O and fractionated in a *Fischer* distillation column. The fraction at $125-130^\circ/12$ Torr yielded 7.49 g (15.6%) of the product in a purity of 94.3%. IR : 1647 (C=C); 1530, 1354 (NO₂); 1002, 922 (CH=CH₂); 751 (4 adjac. arom. H). ¹H-NMR (CCl₄): 8.0–7.1 (*m*, 4 arom. H); 6.1–5.5 (*m*, H–C(3')); 5.2–4.8 (*m*, 2 H–C(4')); 2.97 (*t*-like with f.s., 2 H–C(1')); 2.35 (*m*, 2 H–C(2')). Anal. calc. for C₁₀H₁₁NO₂ (177.21): C 67.78, H 6.26, N 7.90; found: C 67.44, H 5.99, N 7.70.

1.5.2. 2-(3'-Butenyl)aniline (cf. [29]). The nitro compound (7.0 g, 0.037 mol) was reduced with Fe turnings in conc. HCl in the presence of CaCl₂ and the resulting aniline purified by CC (silica gel; hexane/Et₂O 3:2). Distillation yielded 3.7 g (64%) of the pure aniline. IR: 3464, 3384 (NH₂); 1646 (C=C); 1003, 919 (CH=CH₂); 756 (4 adjac. arom. H). ¹H-NMR (CCl₄): 7.0–6.3 (*m*, 4 arom. H); 6.1–5.5 (*m*, H–C(3')); 5.2–4.8 (*m*, 2 H–C(4')); 3.38 (br. *s*, NH₂); 2.7–2.1 (*m*, 2 H–C(1'), 2 H–C(2')). MS: 148 (5, M^{+} + 1), 147 (27, M^{+}), 134 (6), 133 (5), 120 (8), 119 (19), 107 (10), 106 (100), 105 (21). Anal. calc. for C₁₀H₁₃N (147.22): C 81.59, H 8.90, N 9.51; found: C 81.37, H 9.01, N 9.66.

1.5.3. Methylation. The aniline (1.42 g, 9.65 mmol). MeI (1.37 g, 9.65 mmol), and K_2CO_3 (1.52 g, 11 mmol) were stirred in acetone (8 ml) for 40 h at r.t. The usual workup yielded a mixture of 41% of dimethylated, 31% of monomethylated, and 14% of non-methylated material. Separation by FC (hexane/Et₂O 40:1) led to 0.31 g (17%) of pure 17 and to 0.31 g (19%) of the corresponding monomethylated aniline.

17. 1R: 2790 ((CH₃)₂N); 1643 (C=C); 998, 913 (CH=CH₂); 750 (4 adjac. arom. H). ¹H-NMR (CCl₄): 7.2–6.6 (*m*, 4 arom. H); 6.1–5.5 (*m*, H–C(3')); 5.2–4.8 (*m*, 2 H–C(4')); 2.9–2.1 (*m*, 2 H–C(1'), 2 H–C(2')); 2.64 (*s*, (CH₃)₂N). MS: 175 (53, M^+); 160 (14), 135 (12), 134 (100), 132 (19). Anal. calc. for C₁₂H₁₇N (175.28): C 82.23, H 9.78, N 7.99; found: C 82.09, H 10.01, N 8.01.

2-(3'-Butenyl)-N-methylaniline. IR: 3445 (NH); 2818 (CH₃N); 1642 (C=C). ¹H-NMR (CCl₄): 3.44 (br. s, NH); 2.85 (s, CH₃NH); other signals as in 17. MS: 161 (26, M^+), 120 (100). Anal. calc. for C₁₁H₁₅N (161.25): C 81.94, H 9.38, N 8.69; found: C 81.91, H 9.44, N 8.80.

2. Irradiations of the Anilines in Acidic Media. Prep. irradiations with a high-pressure Hg lamp (type 125 HPK, Philips) through quartz in a 150- or 250-ml irradiation apparatus (H. Mangels, Roisdorf/BRD) or in 90-ml half-cylindrical cuvettes at 16–20° under N₂. Anal. irradiations were performed in a merry-go-round apparatus (model DEMA 125, H. Mangels) with the 125-HPK lamp.

2.1. Irradiations of (E)/(Z)-7. The aniline (0.25 g, 1.43 mmol) was dissolved in 0.1N H₂SO₄/MeOH (100 ml) and irradiated for 80 min to yield (GC) a mixture with 26% of (E)-7, 25% of (Z)-7, and 48% of trans-2-methoxy-1-methylindane (trans-9). Three further products were recognized in the GC (total 1.5%); however, none of these represented cis-2-methoxy-1-methylindane (cis-9). Indane 9 was extracted with Et₂O and purified by TLC (toluene) and by distillation (120°/12 Torr); yield 0.10 g (43%). IR: 3075, 3045, 3025 (Ar); 2830 (CH₃O); 1113 (CH₃OAr); 746 (4 adjac. arom. H). ¹H-NMR (CCl₄): 7.05 (br. s, 4 arom. H); 3.63 (q-like, J (2,1 trans) $\approx J$ (2,3 trans) $\approx J$ (2,3 cis) \approx 6.5, H-C(2)); 3.33 (s, CH₃O-C(2)); 3.3-2.5 (m, H-C(1), 2 H-C(3)); 1.28 (d, J = 7, CH₃-C(1)). ¹³C-NMR (CDCl₃; 25.2 MHz): 145.4 (s, C(3a)); 139.4 (s, C(7a)); 126.5 (d, C(5), C(6)); 124.4 (d, C(4)); 123.2 (d, C(7)); 89.4 (d, C(2)); 57.0 (q, CH₃O-C(2)); 45.0 (d, C(1)); 37.1 (t, C(3)); 17.8 (q, CH₃-C(1)). MS: 162 (100, M⁺), 147 (50), 131 (45), 130 (94), 129 (40), 119 (27), 117 (42), 115 (49), 104 (18), 91 (28).

The photoreaction of (E)/(Z)-7 occurred at the same rate in 5N H₂SO₄/MeOH.

2.2. Irradiations of (E)/(Z)-10. The aniline (38.1 mg, 0.236 mmol) was dissolved in 0.1N H₂SO₄/MeOH (15 ml) and irradiated for 45 min to yield a mixture of 18% of (E)-10, 20% of (Z)-10, and 60% of *trans*-9. The isomeric *cis*-9 could not be detected (cap. GC). However, traces (~ 0.2%) of 2-ethyl-1-methylindoline (11) and 2-(2'-methoxybutyl)-N-methylaniline (12) (cf. [2]) were present.

The photoreaction was slower by a factor of 1.5 in 5N H₂SO₄/MeOH. Again, *trans-9* was the sole product. 2.3. *Irradiation of* N,N-*Dimethyl-2-(3'-methyl-2'-butenyl)aniline* (23). A 10⁻² M soln. of 23 in 0.1N H₂SO₄/ MeOH was irradiated for 15 min to yield a mixture of 36.5% of 2-methoxy-1,1-dimethylindane (24) [4] [21] and 57.5% of 23. In addition, seven further products of less than 1% each were formed.

24. IR: 3079, 3030 (Ar); 2828 (CH₃O); 1389, 1368 (> C(CH₃)₂); 1229, 1129, 1112 (CH₃OAr); 772 (4 adjac. arom. H). ¹H-NMR (CCl₄): 7.04 (br. *s*, 4 arom. H); 3.65 (*dd*, *J* (2,3) = 8.5, 6.5, H–C(2)); 3.40 (*s*, CH₃O–C(2)); 3.08 (*dd*, *J* (3,3) = 15, *J* (3,2) = 6.5, H–C(3)); 2.71 (*dd*, *J* (3,3) = 15, *J* (3,2) = 8.5, H–C(3)); 1.30, 1.06 (2*s*, 2 CH₃–C(1)). ¹³C-NMR (CDCl₃, 25.2 MHz): 150.3 (*s*, C(7a)); 138.0 (*s*, C(3a)); 126.7 (*d*, C(4)); 126.4 (*d*, C(5)); 124.6 (*d*, C(7)); 122.0 (*d*, C(6)); 90.1 (*d*, C(2)); 57.9 (*q*, CH₃O–C(2)); 46.2 (*s*, C(1)); 35.3 (*t*, C(3)); 26.7, 22.1 (2 *q*, 2 CH₃–C(1)). MS: 176 (100, M^+), 161 (99), 131 (20), 129 (75).

2.4. Irradiations of N,N-Dimethyl-2-(1'-methylallyl) aniline (13). 2.4.1. (\pm) -13 in MeOH. The aniline (164 mg, 0.935 mmol) was dissolved in 0.2N H₂SO₄/MeOH (90 ml) and irradiated for 60 min to yield a mixture of 31% of 13 and 39% of trans-9. The cis-9 could not be detected. Two by-products were formed in ca. 1% each. Workup and distillation (90–100°/12 Torr) yielded 44 mg (42% with respect to reacted (±)-13) of pure trans-9 which was identical with the material described under 2.1. Anal. calc. for C₁₁H₁₄O (162.23): C 81.44, H 8.70; found: C 81.29, H 8.77.

2.4.2. (-)-(S)-13 in MeOH. The (-)-aniline (175 mg, 1.0 mmol) was dissolved in 0.2N H₂SO₄/MeOH (150 ml) and irradiated for 20 min. The usual workup and prep. TLC (hexane/Et₂O 5:1) yielded, after distillation (110°/12 Torr), 81 mg (50%) of pure (-)-trans-9 of (1R,2R)-configuration. $[\alpha]_{D}^{25} = -56.2 \pm 0.9^{\circ}$ (c = 1.15, CCl₄). Enantiomeric purity (e) according to Eu(hfc)₃ experiments in 1,1,2-trichloro-1,2,2-trifluoroethane: $e = 0.79 \pm 0.01$. All other spectra were identical with those of authentic racemic material.

To the aq. soln. from the extraction of (-)-trans-9 was added NaOH and the basic soln. purged with N₂. Me₂NH in the N₂ stream was trapped with liquid N₂. The condensate was treated with 3 ml of a sat. soln. of picric acid in EtOH to yield, after recrystallization, from EtOH, 24 mg (9%) of dimethylammonium picrate; m.p. 158° ([30]: 158°). ¹H-NMR ((D₆)acetone): 8.68 (s, 2 arom. H); 3.48 (br. s, NH₂); 2.93 (s, (CH₃₎₂NH₂⁺).

2.4.3. (\pm) -13 in H_2O/Et_2O . The aniline (292 mg, 1.67 mmol) was dissolved in 0.1N aq. H_2SO_4 saturated with Et_2O^{12}) and irradiated for 50 min. Extraction with Et_2O yielded, after distillation, 72 mg (29%) of trans-1-methyl-2-indanol (trans-14). After basification of the aq. soln., 35% of the starting aniline were recovered. The cis-isomer of 14 could not be detected. IR: 3340 (OH); 3075, 3050, 3025 (Ar); 1086, 1069 (C-O); 745 (4 adjac. arom. H). ¹H-NMR (CCl₄): 7.07 (br. s, 4 arom. H); 3.98 (q-like, J (2,3 cis) $\approx J$ (2,3 trans) $\approx J$ (2,1 trans) ≈ 6.5 , H-C(2)); 3.3-2.5 (m, H-C(1), 2 H-C(3)); 2.20 (br. s, OH); 1.27 (d, J = 7.5, CH₃-C(1)). MS: 149 (5, M^+ + 1), 148 (54, M^+), 133 (16), 130 (11), 129 (7), 128 (5), 120 (14), 119 (100), 117 (8), 115 (16), 105 (20), 91 (19). Anal. calc. for $C_{10}H_{12}O$ (148.21): C 81.04, H 8.16; found: C 80.79, H 8.31.

¹²) Without saturation with Et_2O the aq. soln. of 13 became turbid after some seconds of irradiation, and the photoreaction slowed down.

2.4.4. (\pm) -13 in EtOH. The aniline (310 mg, 1.77 mmol) was dissolved in 0.1N H₂SO₄/EtOH (300 ml) and irradiated for 65 min. The isolated neutral compound was purified by FC (pentane/Et₂O 10:1) and distillation (122–127°/12 Torr) to yield 163 mg (52%) of trans-2-ethoxy-1-methylindane (trans-15). IR: 3072, 3046, 3028 (Ar); 2873 (RCH₂O); 1117 (RCH₂OAr); 746 (4 adjac. arom. H). ¹H-NMR (CCl₄): 7.15 (br. s, 4 arom. H); 3.80 (q-like, J (2,3 cis) $\approx J$ (2,1 trans) ≈ 6.4 , H–C(2)); 3.60, 3.57 (AB, CH₃CH₂O–C(2)); 3.4–2.6 (m, H–C(1), 2 H–C(3)); 1.34 (d, J = 6.9, CH₃–C(1)); 1.24 (t, J = 6.5, CH₃CH₂O–C(2)). MS: 177 (9, M⁺ + 1), 176 (82, M⁺), 147 (15), 135 (31), 133 (26), 131 (30), 130 (100), 129 (26), 120 (52), 119 (89). Anal. calc. for C₁₂H₁₆O (176.26): C 81.77, H 9.15; found: C 81.69, H 9.06.

2.5. Irradiation of N,N,N-Trimethyl-2-(1'-methylallyl)anilinium Salts (18). 2.5.1. Iodide (X = 1) in MeOH. The salt (440 mg, 1.39 mmol) was irradiated in MeOH (150 ml) for 20 min. The mixture consisted of 79% of (*1-methylallyl)benzene* (19)¹³), 3% of reactant, and of several unknown products in low concentration. The indane was isolated by prep. TLC (hexane/Et₂O 10:1) and CC on silica gel impregnated with 10% AgNO₃ (pentane). Distillation (50°/0.02 Torr) yielded 43 mg (24%) of 19. IR: 1640 (C=C); 1604, 1495 (Ar); 1000, 915 (CH=CH₂); 759, 703 (5 adjac. arom. H). ¹H-NMR (CCl₄): 7.3–6.9 (*m*, 5 arom. H); 6.2–5.7 (*m*, H–C(2)); 5.2–4.8 (*m*, 2 H–C(3)); 3.6–3.2 (*m*, H–C(1)); 1.37 (*d*, J = 7.2, CH₃–C(1)).

2.5.2. Tetrafluoroborate ($X = BF_4$) in MeOH. A 10^{-2} m soln. of the salt in MeOH was irradiated for 120 min. The sole product which could be detected (cap. GC using tridecane as reference) was **19** in 94% yield.

2.6. Irradiation of 2-(3'-Butenyl)-N,N-dimethylaniline (17). 2.6.1. In MeOH. The aniline (300 mg, 1.71 mmol) was irradiated in $0.2N H_2SO_4$ /MeOH (150 ml) for 60 min. Addition of 50 ml of sat. NaCl soln. and extraction with pentane yielded, after distillation (50°/0.02 Torr), 45 mg (20%) of 1-methylindane (20). The compound was identical in all aspects with an authentic sample (cf. [12a]).

2.6.2. In [$O^{-2}H$] Methanol. The aniline (153 mg, 0.873 mmol) was dissolved in a soln. of 0.75 g of D₂SO₄ in 125 ml of [$O^{-2}H$]Methanol and irradiated for 60 min. Workup as described above yielded 30 mg (26%) of **20**. IR and ¹H-NMR: no ²H had been incorporated (neither at CH₃-C(1) nor at C(1)). Incorporation in the aromatic moiety amounted to about 7%.

2.7. Irradiation of trans-N,N-Dimethyl-2-(2'-methylcyclopropyl)aniline (trans-8; Table 2). This compound (175.3 mg, 1.00 mmol; cf. [4] [8]) was irradiated in 0.1N H₂SO₄/MeOH (90 ml) for 50 min. The main product, namely N,N-Dimethyl-2-(1'-methoxybutyl)aniline (16) was isolated by extraction with Et₂O after basification. Prep. GC at 120° and distillation at 60°/0.03 Torr yielded 25 mg of 16. IR: 2822 (CH₃O); 2783 ((CH₃)₂N); 1595, 1577, 1487 (Ar); 1095 (C-O-C); 753 (4 adjac. arom. H). ¹H-NMR (CCl₄): 7.4–6.8 (*m*, 4 arom. H); 4.60 (*m*, H-C(1')); 3.07 (*s*, CH₃O-C(1')); 2.62 (*s*, (CH₃)₂N); 2.7–1.1 (*m*, 2 H-C(2'), 2 H-C(3')); 1.1–0.7 (*m*, 3 H-C(4')). MS: 208 (2, M^{+} + 1), 207 (10, M^{+}), 193 (14), 192 (100), 176 (12), 164 (12). Anal. calc. for C₁₃H₂₁NO (207.32): C 75.32, H 10.21, N 6.76; found: C 75.40, H 10.31, N 6.79.

Compound	Irradiation time [min]							
	0	10	22	31	40	50		
trans-8	98.3	46.0	21.9	11.6	7.4	4.2		
cis-8	_	13.9	14.4	11.2	6.8	4.0		
16	_	12.2	29.7	36.0	47.2	51.8		
(Z)-7	_	3.0	5.0	5.6	5.8	5.8		
(<i>E</i>)-7	_	1.6	2.7	3.1	3.4	3.8		
17	-	4.2	5.3	6.0	5.2	6.1		
trans-9	_	1.1	2.0	3.2	7.0	7.2		
Not identified products	1.7	12.5	16.1	14.8	16.2	14.5		

Table 2. Irradiation of trans-8. Product composition in dependence of time (GC, %).

3. trans- and cis-2-Methoxy-1-methylindane (trans- and cis-9). 3.1. trans/cis-1-Methyl-2-indanol (trans/cis-14). 1-Methyl-2-indanone (1.0 g, 6.84 mmol) [31] dissolved in Et₂O (5 ml) was added dropwise to a stirred soln. of LiAlH₄ (0.23 g, 6 mmol) in Et₂O (10 ml) at r.t. Workup after stirring for an additional hour and distillation (150–160°/11 Torr) yielded 1.0 g (99%) of a mixture of 67% of trans-14 (cf. [6] [7]) and 29% of cis-14¹⁴). IR: 3330

¹³) Anal. irradiations of **18** (X = I) in 0.1N H₂SO₄/MeOH and in H₂O saturated with Et₂O gave also solely **19** in 68 and 86% yield, respectively (cap. GC using tridecane as reference).

¹⁴) cis-14 described by Marshall and Prager [32] should have trans-configuration according to the published ¹H-NMR data.

(br., OH); 1070 (C-O-H); 745 (4 adjac. arom. H). ¹H-NMR (CCl₄): 6.99 (br. s, 4 arom. H); 4.5–4.1 (m, H–C(2)); 3.9–2.6 (m, OH, 2 H–C(3), H–C(1)); 1.30, 1.19 (2d, $J \approx 7$, together 3 H, CH₃–C(1) in *trans-* and *cis-*14).

3.2. Methylation of trans/cis-14 (cf. [33]). The indanol mixture (0.85 g, 5.74 mmol) and Bu_4NHSO_4 (50 mg, 0.15 mmol) were distributed between petroleum ether (2.5 ml) and 50% NaOH (1.2 ml) by stirring for 40 min. Then, Me_2SO_4 (2.17 g, 17.2 mmol) was slowly added and the mixture stirred for 2.5 h. Workup yielded 0.46 g (50%) of a mixture of 70% of *trans*-9 and 26% of *cis*-9. The mixture was separated 2 times by prep. TLC (CH₂Cl₂). The faster moving isomer represented *cis*-9 and the slower moving one *trans*-9.

cis-9 (containing 7% of *trans*-9). IR: 3065, 3040, 3020 (Ar); 2825 (CH₃O); 1130 (\geq C–O–CH₃); 759 (4 adjac. arom. H). ¹H-NMR (CCl₄): 7.05 (br. *s*, 4 arom. H); 4.04 (*q*-like, *J* (2,1 *cis*) \approx *J* (2,3 *cis*) \approx *J* (2,3 *trans*) \approx 6, H–C(2)); 3.33 (*s*, CH₃O–C(2)); 3.5–2.8 (*m*, H–C(1), 2 H–C(3)); 1.15 (*d*, *J* = 7.5, CH₃–C(1)). MS: 162 (100, *M*⁺), 147 (29), 131 (25), 130 (86), 129 (24), 119 (13), 117 (23), 115 (26).

trans-9 (containing 0.2% of *cis*-9) (*cf*. [7]). All spectra were identical with those of 2-methoxy-1-methylindane obtained by photolysis of 13 in $0.1 \text{ H}_2\text{SO}_4/\text{MeOH}$ (see 2.4).

REFERENCES

- U. Koch-Pomeranz, H.-J. Hansen, H. Schmid, *Helv. Chim. Acta* 1975, 58, 178; U. Koch-Pomeranz, H. Schmid, H.-J. Hansen, *ibid.* 1977, 60, 768.
- [2] S. Jolidon, H.-J. Hansen, Helv. Chim. Acta 1979, 62, 2581.
- [3] B. Scholl, H.-J. Hansen, Helv. Chim. Acta 1980, 63, 1823.
- [4] S. Jolidon, H.-J. Hansen, Chimia 1981, 35, 49.
- [5] H. Shizuka, Acc. Chem. Res. 1985, 18, 141.
- [6] M. Miura, M. Yoshida, M. Nojima, J. Chem. Soc., Perkin Trans. 1 1982, 79.
- [7] H. Morrison, D. Giacherio, J. Org. Chem. 1982, 47, 1058.
- [8] B. Scholl, H.-J. Hansen, Helv. Chim. Acta, in preparation.
- [9] S.S. Hixson, in 'Organic Photochemistry', Ed. A. Padwa, M. Dekker, Inc., New York, 1979, Vol.4, p. 191;
 S.S. Hixson, L.A. Franke, *Tetrahedron Lett.* 1983, 24, 41.
- [10] J.-P. Fasel, H.-J. Hansen, Chimia 1981, 35, 9; ibid. 1982, 36, 193.
- [11] H.E. Zimmermann, R.L. Swafford, J. Org. Chem. 1984, 49, 3069.
- [12] a) H.-J. Hansen, H.-R. Sliwka, W. Hug, Helv. Chim. Acta 1979, 62, 1120; b) ibid. 1982, 65, 325.
- [13] S. Jolidon, V. Partali, H.-J. Hansen, Helv. Chim. Acta 1985, 68, 1952.
- [14] T.D. Walsh, R.C. Long, J. Am. Chem. Soc. 1967, 85, 3943.
- [15] C. Pac, H. Sakurai, Chem. Commun. 1969, 20.
- [16] a) A. L. J. Beckwith, W. B. Gara, J. Am. Chem. Soc. 1969, 91, 5691; b) A. L. J. Beckwith, K. U. Ingold, in 'Rearrangement in Ground and Excited States', Ed. P. de Mayo, Academic Press, Inc., New York, 1980, Vol. 1, p. 162ff; cf. also: c) A. L. J. Beckwith, S. H. Goh, Chem. Commun. 1983, 905; d) W. R. Bowman, H. Heaney, P. H. G. Smith, Tetrahedron Lett. 1984, 25, 5821.
- [17] L.K. Montgomery, J.W. Matt, J. Am. Chem. Soc. 1967, 89, 6556.
- [18] A.L.J. Beckwith, C.J. Easton, A.K. Serelis, Chem. Commun. 1980, 482; cf. also: J.M. Surzur, in 'Reactive Intermediates', Ed. R.A. Abramovitch, Plenum Press, New York London, 1982, Vol. 2, p. 121ff.
- [19] J. Mattay, Tetrahedron 1985, 41, 2405.
- [20] H. Morrison, in 'Organic Photochemistry', Ed. A. Padwa, M. Dekker, Inc., New York, 1979, Vol. 4, p. 143.
- [21] S. Jolidon, H.-J. Hansen, Helv. Chim. Acta, in preparation.
- [22] J. Sicher, Angew. Chem. 1972, 84, 177, ibid. Int. Ed. 1972, 11, 200.
- [23] H. Morrison, D. Giacherio, G. Pandey, Tetrahedron Lett. 1982, 23, 3427.
- [24] K. Müller, Chimia 1984, 38, 249.
- [25] a) J.C. Sheehan, R.M. Wilson, J. Am. Chem. Soc. 1964, 86, 5277; b) J.C. Sheehan, R.M. Wilson, A.W. Oxford, *ibid.* 1971, 93, 7222.
- [26] a) J. S. H. Kueh, M. Mellor, G. Pattenden, Chem. Commun. 1978, 5; b) J. Chem. Soc., Perkin Trans. I 1981, 1052.
- [27] S. Jolidon, H.-J. Hansen, Helv. Chim. Acta 1977, 60, 978.
- [28] M. Makosza, B. Serafinova, Przem. Chem. 1967, 46, 393, (Chem. Abstr. 1967, 67, 108393c).
- [29] R.Y. Levina, Y.S. Shabarov, V.K. Potapov, Zh. Obshch. Kim. 1959, 29, 3233; ibid. 1960, 30, 3874.
- [30] Organikum, VEB Deutscher Verlag der Wissenschaften, 11th edn., Berlin, 1972, p. 678.
- [31] O. Wallach, Liebigs Ann. Chem. 1904, 336, 1.
- [32] P.A. Marshall, R.H. Prager, Aust. J. Chem. 1979, 32, 1261.
- [33] A. Merz, Angew. Chem. 1973, 85, 868; ibid. Int. Ed. 1973, 12, 846.